Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
mBio ; 12(4): e0058721, 2021 08 31.
Article in English | MEDLINE | ID: covidwho-1327613

ABSTRACT

Since the D614G substitution in the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged, the variant strain has undergone a rapid expansion to become the most abundant strain worldwide. Therefore, this substitution may provide an advantage for viral spreading. To explore the mechanism, we analyzed 18 viral isolates containing S proteins with either G614 or D614 (S-G614 and S-D614, respectively). The plaque assay showed a significantly higher virus titer in S-G614 than in S-D614 isolates. We further found increased cleavage of the S protein at the furin substrate site, a key event that promotes syncytium formation, in S-G614 isolates. The enhancement of the D614G substitution in the cleavage of the S protein and in syncytium formation has been validated in cells expressing S protein. The effect on the syncytium was abolished by furin inhibitor treatment and mutation of the furin cleavage site, suggesting its dependence on cleavage by furin. Our study pointed to the impact of the D614G substitution on syncytium formation through enhanced furin-mediated S cleavage, which might increase the transmissibility and infectivity of SARS-CoV-2 strains containing S-G614. IMPORTANCE Analysis of viral genomes and monitoring of the evolutionary trajectory of SARS-CoV-2 over time has identified the D614G substitution in spike (S) as the most prevalent expanding variant worldwide, which might confer a selective advantage in transmission. Several studies showed that the D614G variant replicates and transmits more efficiently than the wild-type virus, but the mechanism is unclear. By comparing 18 virus isolates containing S with either D614 or G614, we found significantly higher virus titers in association with higher furin protease-mediated cleavage of S, an event that promotes syncytium formation and virus infectivity, in the S-G614 viruses. The effect of the D614G substitution on furin-mediated S cleavage and the resulting enhancement of the syncytium phenotype has been validated in S-expressing cells. This study suggests a possible effect of the D614G substitution on S of SARS-CoV-2; the antiviral effect through targeting furin protease is worthy of being investigated in proper animal models.


Subject(s)
COVID-19/transmission , Furin/metabolism , Giant Cells/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution/genetics , Animals , COVID-19/pathology , Cell Line , Chlorocebus aethiops , Furin/antagonists & inhibitors , Genetic Fitness/genetics , Genome, Viral/genetics , HEK293 Cells , Humans , SARS-CoV-2/isolation & purification , Vero Cells , Viral Load/genetics , Virus Replication/genetics
2.
Cell Rep ; 33(2): 108254, 2020 10 13.
Article in English | MEDLINE | ID: covidwho-812312

ABSTRACT

Development of specific antiviral agents is an urgent unmet need for SARS-coronavirus 2 (SARS-CoV-2) infection. This study focuses on host proteases that proteolytically activate the SARS-CoV-2 spike protein, critical for its fusion after binding to angiotensin-converting enzyme 2 (ACE2), as antiviral targets. We first validate cleavage at a putative furin substrate motif at SARS-CoV-2 spikes by expressing it in VeroE6 cells and find prominent syncytium formation. Cleavage and the syncytium are abolished by treatment with the furin inhibitors decanoyl-RVKR-chloromethylketone (CMK) and naphthofluorescein, but not by the transmembrane protease serine 2 (TMPRSS2) inhibitor camostat. CMK and naphthofluorescein show antiviral effects on SARS-CoV-2-infected cells by decreasing virus production and cytopathic effects. Further analysis reveals that, similar to camostat, CMK blocks virus entry, but it further suppresses cleavage of spikes and the syncytium. Naphthofluorescein acts primarily by suppressing viral RNA transcription. Therefore, furin inhibitors may be promising antiviral agents for prevention and treatment of SARS-CoV-2 infection.


Subject(s)
Amino Acid Chloromethyl Ketones/pharmacology , Antiviral Agents/pharmacology , Fluoresceins/pharmacology , Furin/antagonists & inhibitors , Protease Inhibitors/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Virus Replication , Animals , Betacoronavirus/drug effects , Betacoronavirus/metabolism , Betacoronavirus/physiology , Chlorocebus aethiops , Humans , Proteolysis , SARS-CoV-2 , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL